A new synthesis and crystal structure of the ethyl 4,6-dibromobenzothiazol-2-ylcarbamate

Li-Zi Yang, Tai-Bao Wei and You-Ming Zhang*

College of Chemistry and Chemical Engineering , Gansu Key Laboratory of Polymer Materials, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China

The title compound was synthesised by the reaction of N-ethoxycarbonyl-N'-(2,4,6-tribromo-phenyl)thiourea with copper chloride in ethanol solution. Cyclisation of the ethoxycarbonylthiourea formed the ethyl 4,6-dibromo benzothiazol-2-ylcarbamate.

Keywords: aminobenzothiazoles, cyclisation, crystal structure

Benzothiazoles comprise a class of therapeutic compounds with antitumor activity at nanomolar levels causing inhibitory activity against a range of human breast, ovarian, colon and renal cell lines in vitro¹⁻³. Moreover benzothiazoles are synthesised in solution by the condensation of o-aminothio-phenols with carboxylic acid derivatives4, the radical cyclisation of thioacylbenzanilides, the base-induced cyclisation of the corresponding o-haloanilides⁵⁻⁷, or the cyclisation by standing in a solution of dithiothreitol in DMF or ethanol⁸. In order to study the structures and biological functions of N-substituted-N'-ethoxycarbonylthiourea and their metal complexes, we have synthesised some metal complexes with these thiourea ligands⁹⁻¹⁵. Yet in this experiment we did not obtain the copper(II) complex of thiourea, but got the title compound. This procedure provides a new way to synthesise aminobenzothiazole. We now report this efficient method for the preparation of aminobenzothiazole and the structure of title compound.

The N-ethoxycarbonyl-N'-(2,4,6-tribromophenyl)thiourea (HL) was prepared according to our previous work¹⁵. To ethanol (30ml) containing the compound(HL) (2mmol) was added an ethanol solution of copper(II) chloride (2mmol). After stirring the solution at room temperature for 2h, the mixture was filtered to obtained solid product, which was then dried in air. The solid was dissolved in ethanol solvent, heated for a while, and then filtered after cooling down. Single crystals of the title compound were obtained after two weeks, by slow evaporation of the ethanol solution. Yield 60%. M.p. 180-182 °C Anal. Calc. For $C_{10}H_8Br_2N_2O_2S$: C, 31.60; H, 2.12; N, 7.37; Found: C, 31.32 H, 2.01; N, 7.19.

As shown in scheme 1, we found that ethyl 4,6-dibromobenzothiazol-2-ylcarbamate was formed in this reaction. The reason for this was presumably due to the fact that

Table 1 Crystal data and structure refinement for $C_{10}H_8Br_2N_2O_2S$

$\begin{array}{llllllllllllllllllllllllllllllllllll$	10 0 2 2 2	
Temperature 298(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group C2/c Unit cell dimensions $a=19.92(18)$ Å $\alpha=90^\circ$ $b=7.68(6)$ Å $\beta=93.91(2)^\circ$ $c=16.48(14)$ Å $\gamma=90^\circ$ Volume 2514(4) Å $\gamma=90^\circ$ $2514(4)$ Å $\gamma=90^\circ$ $2514(4)$ Å $\gamma=90^\circ$ We have the sum of the system of the		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S .	
Crystal system Monoclinic C2/c $a=19.92(18) \ \mathring{A} \ \alpha=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ c=16.48(14) \ \mathring{A} \ \gamma=90^\circ \ b=7.68(6) \ \mathring{A} \ \beta=93.91(2)^\circ \ \gamma=10.68(6) \ \mathring{A} \ \gamma=90^\circ \ \gamma=10.68(6) \ \mathring{A} \ \gamma=10.$	Temperature	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Wavelength	0.71073 Å
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal system	Monoclinic
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Space group	C2/c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Unit cell dimensions	a=19.92(18) Å α=90°
Volume $c=16.48(14) \text{ Å} \ \gamma=90^{\circ}$ Volume $2514(4) \text{ Å} \ 3$ Z 8 Density (calculated) 2.008mg/m^3 Absorption correction $equivalents$ F(000) 464 Absorption coefficient 6.604 mm^{-1} Theta range for data collection Reflections collected $equivalents$ Independent reflections $equivalents$ Data / restraints / parameters $equivalents$ Final R indices $equivalents$		
Volume Z514(4) Å3 3 Z 8 8 2.008mg/m³ Semi-empirical from equivalents 4 6.604 mm¹ 2.48 to 25.05° S775 Independent reflections Data / restraints / parameters Final R indices [$I > 2\sigma(I)$] R1=0.0746, wR2=0.1568 R1=0.1605, wR2=0.2083 Goodness of fit on F^2 8 2.008mg/m³ 8 8 8 8 1 2 2.008mg/m³ 2.008mg		
Density (calculated) 2.008mg/m³ Semi-empirical from equivalents F(000) 464 Absorption coefficient Theta range for data collection Reflections collected Independent reflections Data / restraints / parameters Final R indices $[I \triangleright 2\sigma(I)]$ 2.48 to 25.05° S775 2105 [R(int) = 0.3655] 2105 [R(int) = 0.3655] Reflections Data / restraints / parameters Final R indices $[I \triangleright 2\sigma(I)]$ R1=0.0746, wR2=0.1568 R1=0.1605, wR2=0.2083 Goodness of fit on I 2	Volume	
Absorption correction Semi-empirical from equivalents $F(000)$ 464 Absorption coefficient 6.604 mm ⁻¹ Theta range for data collection Reflections collected 5775 Independent reflections 2105 [R(int) = 0.3655] Data / restraints / parameters Final R indices [$I \gt 2\sigma(I)$] R1=0.0746, wR2=0.1568 R1=0.1605, wR2=0.2083 Goodness of fit on I 2	Z	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Density (calculated)	2.008mg/m ³
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Absorption correction	Semi-empirical
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		from equivalents
Theta range for data collection Reflections collected S775 SIND Data / restraints / parameters Final R indices [$I > 2\sigma(I)$] Squared R1=0.0746, wR2=0.1568 R1=0.1605, wR2=0.2083 Goodness of fit on I 2 Squared R2=0.666	F(000)	464
Reflections collected 5775 Independent reflections 2105 [R(int) = 0.3655] Data / restraints / parameters 2105/78/154 Final R indices [$l > 2\sigma(l)$] R1=0.0746, wR2=0.1568 R1=0.1605, wR2=0.2083 Goodness of fit on F^2 0.666	Absorption coefficient	6.604 mm ⁻¹
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Theta range for data collection	2.48 to 25.05°
$\begin{array}{lll} \text{Data / restraints / parameters} & 2105/78/154 \\ \text{Final R indices } [\textit{I} \!\!>\!\! 2\sigma(\textit{I})] & \text{R1=0.0746, wR2=0.1568} \\ \text{R1=0.1605, wR2=0.2083} \\ \text{Goodness of fit on } \textit{F}^2 & 0.666 \end{array}$	Reflections collected	5775
Final R indices [$I > 2\sigma(I)$] R1=0.0746, wR2=0.1568 R1=0.1605, wR2=0.2083 Goodness of fit on F^2 0.666	Independent reflections	2105 [R(int) = 0.3655]
R1=0.1605, wR2=0.2083 Goodness of fit on F^2 0.666	Data / restraints / parameters	2105/78/154
Goodness of fit on F ² 0.666		R1=0.0746, wR2=0.1568
Goodness of fit on F ² 0.666		R1=0.1605, wR2=0.2083
Largest diff. Peak and hole 0.886 and -0.689 e. Å ⁻³	Goodness of fit on F2	· · · · · · · · · · · · · · · · · · ·
	Largest diff. Peak and hole	0.886 and -0.689 e. Å ⁻³

electrons of copper (II) transferred into the vacant p orbital of bromine atom and the delocalisation of p orbital and π system were weakened by this electrons transferred. Then the lone pair electrons on the sulfur atom were also easily to transfer into the vacant p orbital of carbon atom, which led to the formation of benzothiazoles ring and hydrogen bromide was formed at the same time. Thus the formation of title compound could be easily understood.

Scheme 1

^{*} Correspondent. E-mail: zhangnwnu@126.com

Fig. 1 An ORTEP plot of title compound drawn 50% probability level.

The C=S and one N–H absorption characteristic peaks at 1247cm⁻¹ and 3175cm⁻¹ are not observed in the IR spectrum of title compound. The benzene ring characteristic vibration are at 1589 and 1423cm⁻¹. One strong band at 1551cm⁻¹ attributed to v (C=N), the other at 629cm⁻¹ attributed to v (C–S). The existence of intermolecular hydrogen bonding (N(1)–H(1)–N(2)), the N–H group characteristic peak has blue shift to 3441cm⁻¹. In its ¹H NMR spectrum, δ =7.45 is the proton peak of the benzene ring. Two proton peaks for N–H of the compound (HL) at δ =10.95 and 8.65, disappeared one proton N–H (δ =10.95). And this phenomenon also confirms the formation of the benzothiazoles ring.

The title compound was subjected to single crystal X- ray crystallography¹⁶ and intensity data were collected 298(2) K on the Bruker SMART diffractometer and use graphite monochromatic MoK α radiation (λ =0.71073 Å). The structure was solved directly using the SHELXL-97 program¹⁷ and refined with the SHELXL-97 program¹⁸. Selected crystal data and structure refinement details are presented in Table 1. The molecular structure is shown in Fig. 1. Selected bond distances and angles are listed in Table 2. As presented in Fig. 1, the C(1)–C(2)–N(1)–S(1)–O(2) group is nearly planar (the mean deviation from plane is 0.0156Å) and forms with the benzothiazoles ring a dihedral angle of 3.2°. The dihedral angle between the phenyl ring and thiazoles ring is 1.5°. The S(1)–C(2) bond length in the title compound is 1.749(11) Å, which is shorter than C-S (1.820 Å) and longer than C=S (1.560 Å). Thus the S(1)–C(2) has a double bond character, which may be explained by some π -electron density delocalisation in the region of thiazoles ring. Packing is mainly determined by two mutual intermolecular hydrogen bonds occurring between the N(1)-H(1) and N(2) atoms of centrosymmetric molecules (N(1)–H(1), 0.860 (2) Å; N(1)... N(2)', 2.942 (1) Å, H(1)...N(2), 2.115 (1) Å; N(1)–H(1), N(2)', $161.13^{\circ}=-x+2$, y, -z+3/2).

Table 2 Selected bond distances (Å) and angles (°) for $C_{10}H_8Br_2N_2O_2S$

Br(1)-C(6)	1.863(13)	Br(2)-C(8)	1.876(10)
N(1)-C(1)	1.380(14)	N(1)-C(2)	1.382(14)
N(2)-C(2)	1.301(13)	N(2)-C(3)	1.384(14)
S(1)-C(2)	1.749(11)	S(1)-C(4)	1.760(11)
C(3)-C(4)	1.390(14)	C(4)-C(5)	1.404(15)
C(5)-C(6)	1.398(16)	C(6)-C(7)	1.381(15)
C(1)-N(1)-C(2)	122.9(10)	C(1)-N(1)-H(1)	118.5
C(2)-N(1)-H(1)	118.5	C(2)-N(2)-C(3)	109.3(10)
C(2)-S(1)-C(4)	87.6(5)	N(2)-C(2)-S(1)	117.5(10)
N(2)-C(2)-N(1)	120.2(10)	N(1)-C(2)-S(1)	122.3(8)
N(2)-C(3)-C(4)	116.3(10)	N(2)-C(3)-C(8)	125.8(10)

This work was supported by the Natural Science Foundation of China (No.20371040), the Key Project of Chinese Ministry of Education (205161) and the Foundation of Gansu province (3ZS041-A25-007,031-A21-004)

Received 25 May 2005; accepted 13 July 2005 Paper 05/3271

References

- 1 T.D. Bradshaw, S. Wrigley, D.-F. Shi, R.J. Schultz, K.D. Paull and M.F.G. Stevens, *Br. J. Cancer.*, 1998, 77, 745.
- 2 S.E. O'Brien, H.L. Browne, T.D. Bradshaw, A.D. Westwell, M.F.G. Stevens and C.A. Laughton., Org. Biomolec. Chem., 2003 1 493
- 3 T.D. Bradshaw, M.C. Bibby, J.A. Double, I. Fichtne, P.A. Copper, M.C. Alley and S. Donohue, *Mol. Cancer Therapeutics.*, 2002, 1, 239
- 4 A. Ben-Alloum, S. Bakkas and M. Soufiaoui, *Tetrahedron Lett.*, 1997, **38**, 6395.
- I. Hutchinson, M.F.G. Stevens and A.D. Westwell, *Tetrahedron Lett.*, 2000, 41, 425.
- 6 M.J. Spitulnik, Synthesis., 1976, 730.
- 7 A. Roe and W.P.J. Tucker, J. Heterocycl. Chem., 1965, 2, 148.
- 8 S. Mourtas, D. Gatos and K. Barlos, *Tetrahedron Lett.*, 2001, 42, 2201.
- 9 Y.M. Zhang, T.B. Wei and L.M. Gao, Synth.Commun., 2001, 31, 3000
- Y.M. Zhang, L Xian, T.B. Wei and L.X. Cai, *Acta. Cryst.*, 2003, E59, 817.
- 11 Y.M. Zhang, T.B. Wei, L. Xian, Q. Lin and K.B. Yu, Acta. Cryst., 2003, E59, 905.
- 12 Y.M. Zhang, L. Xian and T.B. Wei, Acta Cryst., 2003, C59, 473.
- 13 L. Xian, T.B. Wei and Y.M. Zhang, *J. Coord. Chem.*, 2004, **57**, 453
- 14 Y.M. Zhang, L. Xian, T.B. Wei and K.B. Yu, J. Chem. Res (S), 2003, 798.
- 15 Q. Lin, Y.M. Zhang, T.B. Wei and H. Wang, J. Chem. Res., 2004, 298.
- 16 All the X-ray crystal structural data are available in CCDC (CCDC No. 259198)
- 17 G.M. Sheldrick, Acta Cryst. A46, 1990, 467
- 18 G.M. Sheldrick, SHELXL97. University of Göttingen, Germany, 1997.